Introduction	Manifold completion	Tangent Bundles	Tangent structure

Differential and tangent structure for restriction categories Octoberfest 2010

Geoff Cruttwell (joint work with Robin Cockett and Jonathan Gallagher)

October 23rd-24th, 2010

 Introduction
 Manifold completion
 Tangent Bundles
 Tangent structure

 •00
 000
 0000
 000

Recall that a **differential restriction category** is a cartesian left additive restriction category with a differentiation operation

$$\frac{X \xrightarrow{f} Y}{X \times X \xrightarrow{D[f]} Y}$$

such that **[DR.1]** D[f+g] = D[f] + D[g] and D[0] = 0; **[DR.2]** $\langle g + h, k \rangle D[f] = \langle g, k \rangle D[f] + \langle h, k \rangle D[f]$ and $\langle 0, g \rangle D[f] = \overline{gf}0;$ **[DR.3]** $D[\pi_0] = \pi_0 \pi_0$, and $D[\pi_1] = \pi_0 \pi_1$; **[DR.4]** $D[\langle f, g \rangle] = \langle D[f], D[g] \rangle$; **[DR.5]** $D[fg] = \langle D[f], \pi_1 f \rangle D[g];$ **[DR.6]** $\langle \langle g, 0 \rangle, \langle h, k \rangle \rangle D[D[f]] = \overline{h} \langle g, k \rangle D[f];$ **[DR.7]** $\langle \langle 0, h \rangle, \langle g, k \rangle \rangle D[D[f]] = \langle \langle 0, g \rangle, \langle h, k \rangle \rangle D[D[f]];$ **[DR.8]** $D[\overline{f}] = (1 \times \overline{f})\pi_0 = \overline{\pi_1 f} \pi_0$; **[DR.9]** $\overline{D[f]} = 1 \times \overline{f} = \overline{\pi_1 f}$.

Introduction	Manifold completion	Tangent Bundles	Tangent structure
000			
Examples			

Some examples:

- smooth maps defined on open subsets of \mathcal{R}^n ;
- rational functions over a commutative ring;
- the join completion of a differential restriction category;
- the classical completion of a differential restriction category (adds germs of maps).

Introduction 0●0	Manifold completion	Tangent Bundles 00000	Tangent structure
Examples			

Some examples:

- smooth maps defined on open subsets of \mathcal{R}^n ;
- rational functions over a commutative ring;
- the join completion of a differential restriction category;
- the classical completion of a differential restriction category (adds germs of maps).

As compared to synthetic differential geometry, this is a very weak setting in which to talk about differentiation: we only assume finite products, no closed structure, no subobject classifier, no object of infinitesimals, no negatives.

Introduction 000	Manifold completion	Tangent Bundles 00000	Tangent structure
Smooth man	folds?		

But this axiomatization looks strange to a differential geometer, since the category of smooth maps between smooth manifolds is not an example!

Introduction 00●	Manifold completion	Tangent Bundles 00000	Tangent structure
Smooth manif	olds?		

But this axiomatization looks strange to a differential geometer, since the category of smooth maps between smooth manifolds is not an example!

In particular, the derivative (or "push-forward") of a smooth map $M \xrightarrow{f} N$ between smooth manifolds is not a map

$$M \times M \xrightarrow{Df} N$$

but instead a map

where TM is the *tangent bundle* of M - think of it as consisting of a point on M, together with a tangent vector at that point.

Introduction	Manifold completion	Tangent Bundles	Tangent structure
	0000		
Manifolds			

To understand the problem, we first need to understand "manifolds" in general.

Definition

(Grandis/Cockett) If **X** is a restriction category, a manifold in **X** consists of a family of objects $U_i \in \mathbf{X}$, together with a family of maps $U_i \xrightarrow{\phi_{ij}} U_j$ such that: (a) $\phi_{ii}\phi_{ij} = \phi_{ij}$; (b) $\phi_{ij}\phi_{jk} \le \phi_{ik}$; (c) $\phi_{ij}\phi_{jk} \le \phi_{ik}$; (c) ϕ_{ij} has partial inverse ϕ_{ii} ; that is, $\phi_{ii}\phi_{ii} = \overline{\phi_{ii}}$.

The maps ϕ_{ii} define how the charts U_i overlap.

Introduction	Manifold completion	Tangent Bundles	Tangent structure
	0000		
Category o	of Manifolds		

There is a natural notion of morphism of these:

Definition

If (U_i, ϕ_{ij}) and (V_k, ψ_{kh}) are manifolds in **X**, then a manifold

morphism A consists of a family of maps $U_i \xrightarrow{A_{ik}} V_k$ such that:

$$\phi_{ij}A_{jk} \leq A_{ik};$$

The last condition ensures the maps glue together correctly on the overlap of charts.

Introduction	Manifold completion	Tangent Bundles	Tangent structure
	0000		
Examples			

If **X** has joins, there is a restriction category Mf(X), where composition is given by matrix multiplication. (In fact, Mf is a 2-functor). Some examples:

- real manifolds (with coproducts);
- manifolds with corner, manifolds with boundary;
- simplicial complexes;
- schemes (?).

There are probably many other examples.

Introduction	Manifold completion	Tangent Bundles	Tangent structure
	0000		
The Problem,	re-stated:		

The manifold completion of a differential restriction category is *not* a differential restriction category.

Introduction 000	Manifold completion	Tangent Bundles ●0000	Tangent structure
Tangent Bund	es		

So what can we do? Well, the derivative should use the tangent bundle, so we change our question: can we define the tangent bundle of any object in the manifold completion of a differential restriction category?

Introduction 000	Manifold completion	Tangent Bundles ●0000	Tangent structure
Tangent Bundl	es		

So what can we do? Well, the derivative should use the tangent bundle, so we change our question: can we define the tangent bundle of any object in the manifold completion of a differential restriction category?

Definition

Suppose that **X** is a differential restriction category, and $M = (U_i, \phi_{ij}) \in \mathbf{Mf}(\mathbf{X})$. Define *TM* to have:

- the same index set as M;
- charts $U_i \times U_i$ (locally, the tangent bundle is a product);
- transition maps

$$U_i \times U_i \xrightarrow{\langle D\phi_{ij}, \pi_1\phi_{ij} \rangle} U_j \times U_j.$$

Introduction 000	Manifold completion	Tangent Bundles 0●000	Tangent structure
The tangent b	undle is a manifold		

 $\langle D\phi_{ii},\pi_1\phi_{ii}\rangle\langle D\phi_{ij},\pi_1\phi_{ij}\rangle$

Introduction	Manifold completion	Tangent Bundles	Tangent structure
000		0●000	000
The tangent b	undle is a manifol	t	

 $\begin{array}{l} \langle D\phi_{ii}, \pi_{1}\phi_{ii}\rangle \langle D\phi_{ij}, \pi_{1}\phi_{ij}\rangle \\ = & \langle \langle D\phi_{ii}, \pi_{1}\phi_{ii}\rangle D\phi_{ij}, \langle D\phi_{ii}, \pi_{1}\phi_{ii}\rangle \pi_{1}\phi_{ij}\rangle \rangle \end{array}$

Introduction	Manifold completion	Tangent Bundles	Tangent structure
		00000	
<u> </u>			
The tangen	t bundle is a man	ifold	
The tangen	c bullare is a man	nora	

$$\begin{array}{l} \langle D\phi_{ii}, \pi_{1}\phi_{ii}\rangle \langle D\phi_{ij}, \pi_{1}\phi_{ij}\rangle \\ = & \langle \langle D\phi_{ii}, \pi_{1}\phi_{ii}\rangle D\phi_{ij}, \langle D\phi_{ii}, \pi_{1}\phi_{ii}\rangle \pi_{1}\phi_{ij}\rangle \rangle \\ = & \langle D(\phi_{ii}\phi_{ij}), \overline{D\phi_{ii}} \pi_{1}\phi_{ii}\phi_{ij}\rangle \text{ by DR5,} \end{array}$$

Introduction	Manifold completion	Tangent Bundles	Tangent structure
		00000	
The tangent b	undle is a manifold		

$$\langle D\phi_{ii}, \pi_{1}\phi_{ii} \rangle \langle D\phi_{ij}, \pi_{1}\phi_{ij} \rangle$$

$$= \langle \langle D\phi_{ii}, \pi_{1}\phi_{ii} \rangle D\phi_{ij}, \langle D\phi_{ii}, \pi_{1}\phi_{ii} \rangle \pi_{1}\phi_{ij} \rangle \rangle$$

$$= \langle D(\phi_{ii}\phi_{ij}), \overline{D\phi_{ii}} \pi_{1}\phi_{ii}\phi_{ij} \rangle \text{ by DR5,}$$

$$= \langle D(\phi_{ii}\phi_{ii}), \overline{\pi_{1}\phi_{ii}} \pi_{1}\phi_{ii}\phi_{ii} \rangle \text{ by DR9,}$$

Introduction	Manifold completion	Tangent Bundles	Tangent structure
		0000	
The tangent b	undle is a manifold		

$$\langle D\phi_{ii}, \pi_{1}\phi_{ii}\rangle \langle D\phi_{ij}, \pi_{1}\phi_{ij}\rangle$$

$$= \langle \langle D\phi_{ii}, \pi_{1}\phi_{ii}\rangle D\phi_{ij}, \langle D\phi_{ii}, \pi_{1}\phi_{ii}\rangle \pi_{1}\phi_{ij}\rangle \rangle$$

$$= \langle D(\phi_{ii}\phi_{ij}), \overline{D\phi_{ii}} \pi_{1}\phi_{ii}\phi_{ij}\rangle \text{ by DR5,}$$

$$= \langle D(\phi_{ii}\phi_{ij}), \overline{\pi_{1}\phi_{ii}} \pi_{1}\phi_{ii}\phi_{ij}\rangle \text{ by DR9,}$$

$$= \langle D\phi_{ii}, \pi_{1}\phi_{ii}\rangle \text{ by R1.}$$

as required. The other two axioms also use the chain rule, as well as DR8 and DR9.

Introduction 000	Manifold completion	Tangent Bundles 00●00	Tangent structure
T as a functor			

One can similarly define an action on T of manifold maps:

$$T(A)_{ik} = \langle DA_{ik}, \pi_1 A_{ik} \rangle$$

and show that T is an endofunctor which preserves restrictions.

Introduction 000	Manifold completion	Tangent Bundles 00●00	Tangent structure
T as a functor			

One can similarly define an action on T of manifold maps:

$$T(A)_{ik} = \langle DA_{ik}, \pi_1 A_{ik} \rangle$$

and show that T is an endofunctor which preserves restrictions.

Moreoever, there is a natural transformation $TM \xrightarrow{p_M} M$ given by projection

$$U_i \times U_i \xrightarrow{\pi_1 \phi_{ij}} U_j$$

All of this only uses DR5, DR8, and DR9. What do the other differential axioms give us?

000	0000	00000	000
Adding tar	igent vectors		

We should be able to add tangent vectors in the same tangent space. Since we can't talk about tangent spaces directly, we first have to show that the pullback of two copies of $TM \xrightarrow{p_M} M$ exists:

$$\begin{array}{ccc} T_2M \xrightarrow{p_2} TM \\ \xrightarrow{p_1} & \downarrow^p \\ TM \xrightarrow{p} & M \end{array}$$

(think of the elements of T_2M as consisting of a pair of tangent vectors at a point).

Adding tangen	t vectors		
Introduction 000	Manifold completion	langent Bundles 000●0	Tangent structure

We should be able to add tangent vectors in the same tangent space. Since we can't talk about tangent spaces directly, we first have to show that the pullback of two copies of $TM \xrightarrow{p_M} M$ exists:

$$\begin{array}{ccc} T_2M \xrightarrow{p_2} TM \\ \xrightarrow{p_1} & \downarrow^p \\ TM \xrightarrow{p} & M \end{array}$$

(think of the elements of T_2M as consisting of a pair of tangent vectors at a point). We can then use DR2 to show that we have natural transformations

$$T_2M \xrightarrow{+_M} TM$$
 and $M \xrightarrow{0_M} TM$

that give an associative, unital, commutative addition.

Introduction	Manifold completion	Tangent Bundles	Tangent structure
000	0000	0000●	
Other results			

• using DR3 and DR4, we can show that T is cartesian, so that $T(M \times N) \cong TM \times TN$;

Introduction	Manifold completion	Tangent Bundles	Tangent structure
000	0000	0000●	
Other results			

- using DR3 and DR4, we can show that T is cartesian, so that $T(M \times N) \cong TM \times TN$;
- using DR6, we get a natural transformation $T_2M \xrightarrow{l_M} T^2M$, which is known in DG as the "vertical lift";

Introduction	Manifold completion	Tangent Bundles	Tangent structure
000	0000	0000●	
Other results			

- using DR3 and DR4, we can show that T is cartesian, so that $T(M \times N) \cong TM \times TN$;
- using DR6, we get a natural transformation $T_2M \xrightarrow{l_M} T^2M$, which is known in DG as the "vertical lift";
- using DR7, we get a natural transformation $T^2M \xrightarrow{c_M} T^2M$, which is known in DG as the "canonical flip";

Introduction	Manifold completion	Tangent Bundles	Tangent structure
000	0000	0000●	
Other results			

- using DR3 and DR4, we can show that T is cartesian, so that $T(M \times N) \cong TM \times TN$;
- using DR6, we get a natural transformation $T_2M \xrightarrow{l_M} T^2M$, which is known in DG as the "vertical lift";
- using DR7, we get a natural transformation $T^2M \xrightarrow{c_M} T^2M$, which is known in DG as the "canonical flip";
- using DR1, we can get a sense in which addition is preserved, in that the following diagram commutes:

Axiomatizing all this, we get the following:

Introduction	Manifold completion	Tangent Bundles	Tangent structure
			000
	Т		
Definition:	Tangent Structure		

If \boldsymbol{X} is a cartesian restriction category, then $\boldsymbol{tangent\ structure\ on\ }\boldsymbol{X}$ consists of:

- (tangent bundles) a cartesian restriction functor $X \xrightarrow{T} X$;
- a total natural transformation $T \xrightarrow{p} I$;
- for each *n* and *M*, the (restriction) pullback of *n* copies of $TM \xrightarrow{p_M} M$ exists (denote it by T_n);
- (addition of tangent vectors) total natural transformations $T_2 \xrightarrow{+} T$ and $I \xrightarrow{0} T$ which are unital, associative, and commutative;
- (vertical lift) a total natural transformation $T_2 \xrightarrow{l} T^2$;

• (canonical flip) a total natural transformation $T^2 \xrightarrow{c} T^2$; together with some coherence equations. If **X** has joins, we also ask that T preserves them.

Introduction	Manifold completion	Tangent Bundles	Tangent structure
000	0000	00000	0●0
Tangent Struc	ture on X		

Unlike differential structure, tangent structure is preserved by most well-behaved constructions! In particular, tangent structure is preserved by \mathbf{Mf} .

Introduction	Manifold completion	Tangent Bundles	Tangent structure
000	0000	00000	0●0
Tangent Struct	ture on X		

Unlike differential structure, tangent structure is preserved by most well-behaved constructions! In particular, tangent structure is preserved by \mathbf{Mf} .

Moreover, if **X** is a differential restriction category, there is tangent structure on **X**, where $TX = X \times X$ and

 $Tf = \langle Df, \pi_1 f \rangle$

(in fact, such tangent structure is equivalent to giving differential structure!).

Thus, the fact that Mf(X) has tangent structure can be seen much more directly: we simply apply Mf to the tangent structure on X.

Introduction	Manifold completion	Tangent Bundles	Tangent structure
000		00000	00●
Conclusion			

Some conclusions:

- tangent structure occurs whenever you have differential structure;
- tangent structure is preserved by well-behaved constructions, while differential structure is not;
- the tangent structure on smooth manifolds can be seen as an example of applying a well-behaved construction to basic tangent structure.

Introduction	Manifold completion	Tangent Bundles	Tangent structure
000	0000	00000	00●
Conclusion			

Some conclusions:

- tangent structure occurs whenever you have differential structure;
- tangent structure is preserved by well-behaved constructions, while differential structure is not;
- the tangent structure on smooth manifolds can be seen as an example of applying a well-behaved construction to basic tangent structure.

Some questions:

- To what extent are the listed properties the essential properties of the tangent bundle? What else do they give?
- What do tangent structures look like in another settings (eg., classical completion, rational functions)?
- What other assumptions on **X** do we need to make to get more of differential geometry?